Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Knee ; 22(3): 156-62, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25715920

ABSTRACT

PURPOSE: The aims of this study are to determine how opening-wedge high tibial osteotomy (HTO) affects cartilage health in the tibiofemoral (TF) joint and patella, and to explore relationships between TF and patellofemoral (PF) joint kinematics and cartilage health in HTO. METHODS: 14 knees (13 subjects) with medial TF osteoarthritis (OA) were examined before HTO and 6 and 12 months after HTO using delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) to evaluate cartilage health at the TF joint and patella. They were also examined using a validated 3D MR knee kinematics measurement to obtain 11 rotations and translations at both TF and PF joints. RESULTS: No statistically significant differences in overall TF or patellar dGEMRIC score were found at 6 or 12 months after HTO. However three subjects had large decreases (mean 105 ms) in TF dGEMRIC at 6 months that recovered at 12 months. Kinematics for these subjects were compared to subjects who did not have decreases in TF dGEMRIC at 6 months (n=5). Differences were observed between groups with HTO in anterior and proximal tibial translation (mean differences 3.05 mm and 1.35 mm), and patellar flexion (mean difference 3.65°). These changes were consistent between 6 and 12 months, despite recovery of TF dGEMRIC values. CONCLUSIONS: We did not find significant differences in TF or patellar dGEMRIC before and after HTO with all subjects, however there were differences in kinematics between subjects who had a decrease in TF dGEMRIC at 6 months and those who did not. This suggests a link between joint kinematics and cartilage health in HTO. CLINICAL RELEVANCE: The effect of opening-wedge high tibial osteotomy on cartilage GAG concentration may be linked to specific changes in knee kinematics following surgery.


Subject(s)
Cartilage, Articular/pathology , Osteoarthritis, Knee/surgery , Osteotomy/methods , Patellofemoral Joint/surgery , Range of Motion, Articular , Tibia/surgery , Adult , Biomechanical Phenomena , Follow-Up Studies , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Osteoarthritis, Knee/diagnosis , Osteoarthritis, Knee/physiopathology , Patellofemoral Joint/physiopathology
2.
J Biomech Eng ; 134(3): 031009, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22482689

ABSTRACT

Fluoroscopic imaging is commonly used for assessing relative motions of orthopaedic implants. One limiting factor to in vivo model-based roentgen stereophotogrammetric analysis of total knee arthroplasty is the need for 3D models of the implants.The 3D models of the implant components must be reverse-engineered, if not provided by the company, which makes this method impractical for a clinical study involving many types or sizes of implants. This study introduces a novel feature-based methodology that registers the features at the implant-bone or implant-cement interface of the components that have elementary shapes. These features include pegs with hemispherical heads, and straight, circular or curved edges located on flat faces of the box of the femoral component or the stem geometry of the tibial component. Software was developed to allow easy registration of these features through a graphical user interface. The accuracy and precision of registration for multiple flexion angles from 0 to 120 deg was determined with reference to registered poses of the implants through experiments on bone replica models and also on a cadaver specimen implanted with total knee prostheses. When compared to an equivalent bi-planar model-based registration, the results were comparable: The mean accuracy of this feature-based method was 1.45 deg and 1.03 mm (in comparison to 0.95 deg and 1.32 mm for the model-based approach), and the mean precision was 0.57 deg and 0.26 mm (in comparison to 0.42 deg and 0.44 mm for the model-based approach).The methodology and the developed software can easily accommodate different design of implants with various fixation features. This method can facilitate in vivo kinematic analysis of total knee arthroplasty by eliminating the need for 3D models of the implant components.


Subject(s)
Arthroplasty, Replacement, Knee , Mechanical Phenomena , Photogrammetry/methods , Biomechanical Phenomena , Humans , Imaging, Three-Dimensional , Knee Joint/anatomy & histology , Models, Anatomic
SELECTION OF CITATIONS
SEARCH DETAIL
...